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Abstract 

Physical performance tests such as the 30-second Sit-to-Stand (30s-STS), Timed Up 

and Go (TUG), and Short Physical Performance Battery (SPPB) are widely used to 

assess physical function in older adults and are predictive of key health outcomes. 

However, their routine use in clinical practice is limited by time, resource, and per-

sonnel constraints. This study aimed to validate the automated scoring of physical 

performance assessments using a mobile, markerless motion capture (MMC) app 

compared to scoring by a certified exercise physiologist (CEP), and to quantify the 

rate and reasons for technology-related data loss. 228 adults (mean age = 61.6 ± 11.9 

years) with at least one chronic medical condition were enrolled. Participants com-

pleted seven performance assessments: 30s-STS, TUG, and all components of the 

SPPB (Side-by-Side, Semi-Tandem and Tandem balance stands, 5-times Sit-to-

Stand (5xSTS), and Gait Speed). All tests were scored simultaneously by a CEP and 

the MMC app using a Light Detection and Ranging (LiDAR)-enabled iPad. Agreement 

was assessed using intraclass correlation coefficients (ICCs) and weighted Cohen’s 

kappa. Agreement between the MMC app and CEP was good to excellent for all 

assessments. ICCs ranged from 0.812 (Tandem Stand) to 0.995 (5xSTS). The overall 

SPPB score showed almost perfect agreement (κ = 0.808). Perfect agreement with no 

variability was observed for the Side-by-Side and Semi-Tandem balance tests. The 

overall tech-related data loss rate was low (3.1%), with the most common issue being 

poor motion tracking quality (1.3%). Automated scoring of physical performance tests 

using a self-contained MMC app demonstrated high agreement with expert scoring 

and low data loss in a cohort of participants with a range of chronic medical condi-

tions. These findings support the use of MMC-enabled mobile applications for scal-

able, accessible, and objective assessment of physical function in clinical settings, 

with future potential for remote and asynchronous use.
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Author summary

Tests of physical function—like standing up from a chair or walking a short 
distance—are powerful tools for understanding mobility, frailty, and future health 
risks in older adults. However, these tests are rarely used in routine care due to 
time, space, and staff constraints. In our study, we evaluated a mobile applica-
tion that uses the iPad’s built-in camera to automatically measure how a person 
performs common movement-based tests. We tested the app with 228 older 
adults living with chronic illness and compared its automated scores to those 
from a trained health professional. We found strong agreement between the 
two, suggesting that accurate scoring can be achieved without a human rater. 
The app also performed reliably, with very few technical failures or lost data. 
By reducing the need for trained observers or specialized equipment, our tool 
could help make mobility assessments more accessible—both in clinics and at 
home. In future work, we aim to expand the technology for use with standard 
smartphone cameras and support fully self-directed testing. Ultimately, our goal 
is to enable broader, earlier detection of functional decline, and to support more 
personalized care through digital health tools that are scalable, affordable, and 
easy to use.

1.  Introduction

Physical performance assessments, such as the 30-second Sit-to-Stand (STS) test 
[1], the Short Physical Performance Battery (SPPB) [2], and the Timed Up and Go 
(TUG) test [3], are essential tools for evaluating physical function in older adults, 
including those with chronic diseases [4]. These tests were designed to improve 
upon self-reported measures by providing objective and reliable insights into a 
patient’s physical capabilities including aerobic fitness, strength, and balance. In 
clinical or research settings, trained clinicians typically guide patients through these 
assessments and carry out direct observation and scoring. Large normative datasets 
support established cutoffs and performance thresholds for frailty, fall risk, and other 
clinical indicators [3,5–8]. These assessments are not only valuable for quantifying 
change with interventions (e.g., exercise) [9–11], but they are also highly predictive 
of outcomes such as hospitalization, disability, reduced quality of life, post-operative 
complications, increased mortality, and healthcare costs [2,7,12–18]. Consequently, 
physical performance tests are valuable not only for patients but also for clinicians 
and health care systems, enabling informed care and proactive decision-making 
[13,19].

Advances in digital technology have created new opportunities to modernize phys-
ical performance assessments, enhancing their automation, sensitivity, accessibility, 
and standardization. For decades, biomechanical research has leveraged digital tools 
for measuring physical movement, including optical tracking systems and sensors like 
ground force plates and inertial measurement units (IMUs) [20]. More recently, these 
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tools have been applied to physical performance assessments, with in-depth biomechanical analyses of gait [21–23], 
STS [24–26], and TUG [27,28]. Most of these biomechanical studies have been conducted in controlled laboratory envi-
ronments using specialized, research-grade equipment (e.g., a computerized walkway with embedded pressure sensors 
(GAITRite, CIR Systems, USA) [22], or a 5-sensor wearable IMU system (LegSys+, BioSensics, USA) [24]), which are 
costly, lab-intensive, and not well-suited for routine clinical use due to challenges in data extraction, patient burden, and 
workflow integration [29–32]. However, with a recognized need to use more readily available devices such as smartphone 
cameras to facilitate proactive health monitoring from a patient’s home [29,31], there has been an emerging intersection of 
biomechanical knowledge and consumer-grade technology including markerless motion capture (MMC technology).

Markerless motion capture (MMC) technology offers a low-cost and convenient solution for tracking movement during 
physical performance assessments. Unlike traditional marker-based motion capture systems, which require multiple 
near-infrared cameras and reflective markers placed on specific body landmarks [29,33], MMC leverages consumer cam-
era technology, such as those found in smartphones and tablets, paired with advancements in computer vision and deep 
learning algorithms for pose estimation [34,35] These advancements have brought MMC technology closer to the accu-
racy levels of marker-based systems [29,33,36,37]. The move to MMC provides significant benefits, especially by reduc-
ing the time and cost associated with marker-based approaches [29,35,38], which have often been impractical for clinical 
settings. Beyond its cost-effectiveness and efficiency, the portability of MMC systems makes it well-suited for telehealth 
applications, and its rich kinematic data output creates opportunities for automated assessments and more sensitive indi-
cators of performance.

While MMC technology has shown promise as a tool for physical performance assessments, its application in clinical 
research remains relatively narrow and underexplored. A 2023 review by Lam et al. found that although 65 studies applied 
MMC technology for clinical measurements in rehabilitation, more than half specifically focused on movement disorders 
such as Parkinson’s Disease and Cerebral Palsy [29]. Only a small subset of these studies assessed the validity of MMC 
systems for specific physical performance tests, such as shoulder range of motion [39,40]. Similarly, a systematic review 
on MMC technology’s use in neurodegenerative contexts revealed that most studies (24 out of 26) concentrated on gait 
analysis [32]. There have been efforts to automate evaluations of specific tests such as the TUG using the Xbox Kinect 
[41] and conventional video cameras [42–45], as well as the STS [46–50]. Despite these developments, few studies have 
explored the application of MMC systems for a comprehensive range of physical performance assessments or validated 
its automated scoring against the clinical reference standard of an expert clinician evaluation in adults with chronic 
illnesses.

The current study aims to validate the automated scoring of physical movement assessments using an app-based 
MMC system by comparing it to the clinical reference standard of scoring by a certified exercise physiologist (CEP) in a 
large sample of older adults with chronic medical conditions. A secondary aim is to explore the rate and reasons for MMC 
system-related data loss across this diverse sample.

2.  Methods

2.1.  Study design and population

This study is part of a larger research project investigating multidimensional contributors to the development of frailty by 
way of movement assessments, nutritional analysis, daily physical activity, and self-reported survey data. For this paper, 
only movement assessment data, self-reported survey data (e.g., demographic information), and data obtained through 
medical chart abstraction (e.g., Charlson Comorbidity Index) are included.

The study population consisted of community-dwelling adults recruited through local research clinics, including the 
Cancer Rehabilitation Clinic, the Edmonton Cirrhosis Care Clinic, and targeted social media advertisements. Inclusion cri-
teria were: (i) a history of at least one chronic medical condition associated with increased frailty risk (condition verified by 
medical chart review); (ii) ≥18 years of age; (iii) ability to perform functional movement assessments, wear a smartwatch 
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for one week, and log dietary intake for two days; and (iv) capacity to provide informed consent. All research activities 
were approved by the University of Alberta’s Health Research Ethics Board (Pro00117501), and all participants provided 
written informed consent prior to participation.

2.2.  Procedure

The study was conducted at the University of Alberta in Edmonton, Alberta, Canada, between December 2023 and August 
2024. Movement assessments were conducted in a clinical laboratory setting. Initially, the first 32 participants completed 
the test battery over two separate laboratory visits spaced 6–14 days apart, with approximately half of the assessments 
performed at each visit. Following protocol refinement to simplify logistics and minimize participant burden, all subsequent 
participants completed the full test battery in a single laboratory visit, with a scheduled mid-session rest period to reduce 
fatigue and ensure participant comfort.

Prior to the clinic visit, participants completed an online consent form, a demographic survey, and the Physical Activity 
Readiness Questionnaire (PAR-Q). Upon arrival, their PAR-Q responses were reviewed by a certified exercise physiolo-
gist (CEP) experienced in working with individuals with chronic medical conditions. The review included discussions about 
limitations affecting their ability to complete the movement assessments, review of blood pressure and heart rate, and 
participants were invited to opt out of any tests for which they felt they would experience discomfort. Prior to beginning 
the movement assessments, clearance for physical activity was determined by the CEP, with as needed, but infrequent 
physician consultation.

2.2.1.  Movement assessments.  During their visit, participants performed a series of movement assessments under 
the instruction of the CEP. The assessments included the 30-second Sit-to-Stand (30s-STS) test [1], the Timed Up and Go 
(TUG) test [3], and the 5 tests of the Short Physical Performance Battery (SPPB) [2]: the Side-by-Side Stand, the Semi-
Tandem Stand, the Tandem Stand, the 5-times Sit-to-Stand (5xSTS) test (corresponding to the ‘Repeated Chair Stand 
Test’ described in the original SPPB validation [2]), and the Gait Speed test. These assessments were selected for their 
widespread use in clinical practice and research, with large normative datasets that establish population-based reference 
values for each test [2,51,52], systematic reviews documenting their psychometric properties [53–59], and consistent 
inclusion in geriatric assessment guidelines [60–62].

The tested movement assessments are further detailed in Table 1. The SPPB total score was calculated following the 
SPPB scoring protocol [2], with the five constituent test scores summed to yield a total score between 0 (lowest function) 
and 12 (highest function). To ensure participant safety, for the Side-by-Side, Semi-Tandem, and Tandem Stands, partici-
pants were offered the option of having a chair placed within arm’s reach for support if balance was lost.

Because the objective of this study was to compare scoring agreement between a MMC system and clinician measure-
ment, and not to assess change or performance differences across conditions or sessions, randomization of assessment 
order was not required. A fixed order of assessments was implemented to align with clinical workflows and optimize partic-
ipant comfort, with a 15-minute break (used for instructions on other study elements) scheduled halfway through the tests.

2.2.2.  The Ameya MMC App.  A custom-built iOS application, the Ameya MMC app (Fig 1), was developed for this study 
to support multidimensional frailty assessment, including automated scoring of physical performance tests (Tables 1 and 2) 
using MMC technology. The app captures 3D joint position data from 34 anatomical landmarks at approximately 30 Hz using 
the Light Detection and Ranging (LiDAR) depth-sensing camera built into certain iPad Pro and iPhone Pro models.

The app’s MMC component is built using a skeletal tracking module which supports both RGB and RGB-D camera 
input. In this study, real-time pose estimation was performed using the LiDAR-based depth camera on the iPad Pro (Fifth/
Sixth generation, Apple Inc., US). The Ameya MMC app incorporated this tracking framework to enable automated, 
test-specific scoring procedures for the investigated physical performance assessments. Participants were assigned 
individual profiles within the app, which allowed trained research assistants (RAs) to initiate the appropriate assessments 
using the clinician-facing interface.
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A consistent setup protocol was used during data collection (iPad placed in a tripod approximately 2.5 m away from the 
participant, with the camera lens approximately 0.5 m off the ground; see Table 1 and Fig 1), however, assessments were 
conducted in multiple clinical rooms with variation in flooring, lighting, and background. The tracking system operated 
robustly under these conditions without additional configuration or environmental controls.

Table 1.  Description of movement assessments and MMC system setup.

Assessment Name Assessment Description Clinician Measurement 
Protocol

Measurement 
Type

MMC System Setup  
(iPad Placement)

30-second Sit-to-Stand  
(30s-STS) [1]

Repeated sit-to-stand move-
ments from a chair over 30 
seconds

Count number of full upright 
stands completed within 30 
seconds

Continuous (0–X 
reps complete)

Camera placed at front-right 
angle to participant and 
chair, ~ 2.5 m distance

Timed Up and Go (TUG) [3] Stand from chair, walk 3 meters, 
turn, return, and sit down again

Time to complete full 
sequence

Continuous (s) Camera placed in front of partici-
pant, ~ 5 m from starting position/
chair

SPPB: Side-by- Side Stand [2] Standing with feet together for up 
to 10 seconds

Time held (up to 10 
seconds)

Continuous 
(0–10s)

Camera placed directly in front 
of participant, ~ 2.5 m distance

SPPB: Semi-Tandem Stand [2] Standing with one heel of one 
foot next to the instep of the 
other for up to 10 seconds

Time held (up to 10 
seconds)

Continuous 
(0–10s)

Camera placed to side of par-
ticipant, ~ 2.5 m away, with back 
foot closest to camera

SPPB: Tandem Stand [2] Standing with one foot directly 
in front of the other for up to 10 
seconds

Time held (up to 10 
seconds)

Continuous 
(0–10s)

Camera placed to side of partici-
pant, ~ 2.5 m away

SPPB: 5-times Sit-to-Stand 
(5xSTS) [2]

Rising from a seated position 
to standing and sitting again, 5 
times, as quickly as possible

Time to complete 5 stands Continuous (s) Camera placed at front-right 
angle to participant and 
chair, ~ 2.5 m distance

SPPB: Gait Speed [2] Walking 3 meters at a usual pace Time to walk 3 meters, 
divided by 3 meters

Continuous (s) Camera placed in front of partici-
pant, ~ 5 m from start line

SPPB: Total Score [2] Composite score summing 
results from balance tests, Gait 
Speed, and 5xSTS

Calculated with established 
scoring protocol (range: 
0–12), sum of 5 component 
test scores

Ordinal (0–12) Derived from video recordings of 
individual tasks; MMC algorithms 
apply scoring logic per test

https://doi.org/10.1371/journal.pdig.0001172.t001

Fig 1.  Ameya MMC App and in-clinic setup with the CEP.

https://doi.org/10.1371/journal.pdig.0001172.g001

https://doi.org/10.1371/journal.pdig.0001172.t001
https://doi.org/10.1371/journal.pdig.0001172.g001
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Test-specific scoring algorithms were executed in real time during each assessment (see Table 2). Each algorithm 
was tailored to the corresponding movement test, where movement signals like vertical displacement or forward motion 
were used to identify key events like stand transitions, walking phases, or balance loss. These scoring algorithms 
included repetition detection and counting for the 30s-STS test and the 5xSTS test, time estimation for the TUG test 
and the Gait Speed test, and duration thresholds for balance tests. Output metrics were calculated automatically and 
displayed immediately on the app interface after each test. MMC app recordings were stored locally on the iPad and 
automatically synchronized with a secure cloud server, and included in-app face masking (see Fig 1) for enhanced 
participant privacy.

The application also included error detection and interface elements to support use by non-technical staff. These 
included countdown timers, real-time movement counters, and visual indicators when pose estimation was compromised 
(e.g., due to occluded joints or camera misalignment).

During pilot testing, scoring algorithms were tested and refined to accommodate varied movement speeds, body sizes, 
and compensatory postures observed in the target population. Subsequent minor adjustments to the scoring algorithms 
were performed iteratively during data collection in response to observed edge cases, optimizing smoothing parameters 
for variable joint trajectories such as irregular repetitions, and increasing tolerance to partial occlusions when limbs were 
temporarily obscured. These refinements did not alter the underlying scoring logic but improved the robustness of detec-
tion across participants. All recordings were reprocessed at the conclusion of the study’s data collection period using the 
finalized algorithm set (one per movement test) to ensure scoring consistency across the full dataset.

Altogether, the Ameya MMC app’s architecture includes real-time pose tracking, task-specific scoring logic, automated 
data handling, and built-in quality control mechanisms. These components were developed to support standardized and 
scalable assessment of physical performance in structured clinical research settings.

2.2.3.  Additional measurements.  Outside of the in-person session, participants completed additional questionnaires 
via REDCap, including a demographic survey, the revised Edmonton Symptom Assessment Scale [63], the Edmonton 
Frail Scale [64], the EQ-5L-5D [65], the Duke Activity Status Index (DASI) [66], and a fall history survey. For participants 
who gave explicit consent (n = 226), medical chart abstraction was performed to obtain clinical data (e.g., history 
of chronic disease or cancer) and calculate the Charlson Comorbidity Index (CCI) [67]. The CCI is a measure of 
comorbidity burden, assigning weighted scores to chronic conditions, with higher scores indicating increased comorbidity 
and mortality risk.

Table 2.  Summary of test-specific algorithm logic and output metrics.

Assessment Name Input Signal Core Detection Logic Output Metric(s) Displayed 
in App

30-second Sit-to-Stand 
(30s-STS) [1]

Vertical body motion Detect repeated sit-to-stand transitions over a fixed 
30-second period; apply movement thresholds and 
filters to avoid false counts.

Number of full stands com-
pleted; data quality flag.

Timed Up and Go (TUG) [3] Body-height change during 
sit-to-stand and return-to-sit

Detect stand-up and sit-down events from body-
height transitions; compute time between leaving 
and returning to the seated position.

Total time (seconds); 
data-quality flag.

SPPB Balances (Side-
by-Side, Semi-Tandem, 
Tandem) [2]

Hand and foot/ankle motion 
relative to start position

Detect loss of balance using hand or foot 
movement.

Duration held (up to 10 
seconds); pass/fail balance 
score; data-quality flag.

SPPB: 5-times Sit-to-Stand 
(5xSTS) [2]

Vertical body motion Identify five complete sit-to-stand cycles; measure 
total time between the first and fifth stands.

Time to complete five stands 
(seconds); data-quality flag.

SPPB: Gait Speed [2] Forward body (core) 
displacement

Estimate forward walking speed from body motion 
over 3 meters; verify consistency across partial-
distance segments

3-meter gait duration (sec-
onds) and derived score; 
data-quality flag.

https://doi.org/10.1371/journal.pdig.0001172.t002

https://doi.org/10.1371/journal.pdig.0001172.t002
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2.3.  Outcomes

The primary outcome was the level of agreement between the Ameya MMC app and a clinician (CEP), evaluated sep-
arately for each of the seven movement assessments, as well as for the overall SPPB score. Agreement was assessed 
with Intraclass Correlation Coefficients (ICCs) for the following metrics: (i) TUG duration (seconds); (ii) number of repe-
titions in the 30s-STS test; (iii-v) balance duration (up to 10 seconds) for the Side-by-Side, Semi-Tandem, and Tandem 
Stands; (vi) time (seconds) to complete five sit-to-stand repetitions; and (vii) walking speed during the Gait Speed test. 
Agreement for the SPPB total score (range: 0–12) was also assessed.

The rate and reasons for tech-related data loss per movement assessment and overall were tracked. Tech-related data 
loss was defined as the percentage of MMC app recordings that were not analyzable, omitting participant or protocol-
related exclusions.

Four types of tech-related issues were identified: (i) app crashes (any instance where the MMC app failed after record-
ing had begun), (ii) incomplete data (occurred where earlier versions of the real-time algorithm prematurely terminated a 
test before the completion criteria was met), (iii) poor motion tracking quality, determined through visual inspection (e.g., 
skeletal overlay misaligned with participant joints), field notes (e.g., tracking of background objects was observed by the 
iPad operator), or detection of implausible joint movements (e.g., multi-joint velocity spikes = faster than 5 m/s, a conserva-
tive cutoff well above expected speeds for these clinical tasks [24,27,68–72]), and (iv) stand count discrepancies with the 
5xSTS test (the CEP counted five repetitions but the MMC system did not, leading to the manual stopping of recordings 
that prevented the MMC app from calculating a duration).

2.4.  Statistical analysis

Descriptive statistics were calculated using appropriate summary measures for continuous and ordinal outcomes. Agree-
ment between the CEP and MMC app on continuous test outcomes was assessed using ICCs with 95% confidence 
intervals, calculated using single-rating, absolute-agreement, two-way mixed-effects models (ICC(2,1)) following guide-
lines from Koo and Li [73]. ICC values were interpreted using the following thresholds: values below 0.5 were considered 
to reflect poor agreement, values between 0.5 and 0.75 indicated moderate agreement, values between 0.75 and 0.9 
indicated good agreement, and values greater than 0.9 indicated excellent agreement [73]. ICCs were undefined when no 
between-subject variability was present.

Agreement on the discrete, ordinal SPPB total score (range: 0–12) was evaluated using a weighted Cohen’s kappa 
with quadratic weights. This method accounts for agreement by chance and penalizes larger differences more heavily. 
Kappa values were interpreted based on the classification system by Landis and Koch [74]: values below 0.00 were 
considered poor agreement; values between 0.00 and 0.20 slight; 0.21 to 0.40 fair; 0.41 to 0.60 moderate; 0.61 to 0.80 
substantial; and 0.81 to 1.00 almost perfect agreement. All analyses were conducted using Jamovi (version 2.3) and the 
‘seolmatrix’ module [75] based on the ‘irr’ package [76] in R.

3.  Results

3.1.  Characteristics of the participants

A total of 228 adults with at least one chronic medical condition or a history of cancer were enrolled. Demographic char-
acteristics are summarized in Table 3. Of the total sample, 62% were female, 79% identified as white, and mean age 
was 61.6 ± 11.9 years. The cohort demonstrated a high burden of chronic disease and comorbidity, with a mean Charlson 
Comorbidity Index (CCI) score of 4.52 ± 2.37. The most commonly reported chronic conditions were a history of cancer 
(37%) and cirrhosis (25%). Additional diagnoses (grouped into the Other category in Table 3 Disease History) spanned 
a broad range, including neurological conditions (e.g., Parkinson’s disease, multiple sclerosis), post-transplant status, 
inflammatory arthritis, and diabetes.
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Table 3.  Participant characteristics.

Participant Characteristics n (%) or M ± SD

Age (years) 61.6 ± 11.9

Sex

  Female 142 (62.3)

  Male 86 (37.7)

Gender (n = 227)

  Woman 139 (61.2)

  Man 87 (38.3)

  Other 1 (<1)

Race (n = 224)

  White 177 (79.0)

  East Asian 12 (5.4)

  South Asian 10 (4.5)

  Aboriginal 6 (2.7)

  Latino 4 (1.8)

  Middle Eastern 2 (0.9)

  Black 1 (<1)

  Other 4 (1.8)

  Mixed race 8 (3.6)

BMI (kg/m²) (n = 226) 29.2 ± 6.6

Disease History* (n = 226)

  Cancer 84 (37.2)

  Cirrhosis 57 (25.2)

  Other 103 (45.6)

Charlson Comorbidity Index (n = 226) 4.52 ± 2.37

Gait Aid Used (n = 218) 16 (7.3)

Falls 1 year prior (n = 218)

  None 135 (61.9)

  One 45 (20.6)

  Two 20 (9.2)

  More than two 18 (8.3)

Duke Activity Status Index score (n = 212) 42.7 ± 12.3

EQ-5D-5L VAS rating (n = 218) 68.9 ± 18.4

Edmonton Symptom Assessment Scale (n = 210)

  Pain 2.49 ± 2.19

  Tiredness (lack of energy) 3.72 ± 2.68

  Drowsiness (feeling sleepy) 2.70 ± 2.53

  Nausea 0.50 ± 1.22

  Appetite 3.28 ± 2.76

  Shortness of breath 1.50 ± 2.26

  Depression 1.64 ± 2.33

  Anxiety 1.90 ± 2.29

  Wellbeing (overall feeling) 3.69 ± 2.70

Edmonton Frail Scale score (n = 218)

  Fit (score 0–3) 102 (46.8)

  Vulnerable (score 4–5) 53 (24.3)

  Mild Frailty (score 6–7) 40 (18.3)

(Continued)
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Participants reported moderate functional capacity in daily life, with a mean DASI score of 42.7 ± 12.3 (n = 212). Overall 
health status, as rated on the EQ-5D-5L visual analog scale, averaged 68.9% ± 18.4% (n = 218). A gait aid was regularly 
used by 7% of the participants, and 38% reported at least one fall in the previous year. Symptom burden, as measured 
by the Edmonton Symptom Assessment Scale (n = 210), was generally low, with the highest mean scores observed for 
tiredness (3.72 ± 2.68), overall wellbeing (3.69 ± 2.70), and appetite concerns (3.28 ± 2.76). Based on the Edmonton Frail 
Scale (n = 218), 46.8% were categorized as not frail, while 24.3% were classified as vulnerable, and 25.6% with mild to 
moderate frailty. Seven participants (3.2%) were classified as severely frail.

3.2.  Agreement between CEP and the MMC app

Agreement between the outcomes from the CEP and the MMC app (Table 4) was excellent for the TUG [ICC = 0.96, 95% 
CI: 0.93–0.98], the 30s-STS [ICC = 0.93, 95% CI: 0.90–0.95], and the 5xSTS test [ICC = 0.995, 95% CI: 0.98–0.99]. Agree-
ment on Gait Speed was also high [ICC = 0.87, 95% CI: 0.80–0.91].

For both the Side-by-Side and Semi-Tandem Stands, the MMC app recorded perfect agreement with the CEP. How-
ever, ICCs were undefined due to a ceiling effect; all participants completed the full 10-second duration, resulting in no 
between-subject variability.

Of all tests, the Tandem Stand showed the lowest agreement between the CEP and the MMC app [ICC = 0.81, 95% CI: 
0.76–0.86], though the value remained in the good range. Further inspection revealed six instances in which participants 
lost balance and used a nearby chair for support. While the CEP recorded this as the end of the test, the MMC app was 
unable to detect the chair support as it occurred behind the patient and out of the field of view of the camera. When these 
six cases were excluded, agreement improved to excellent [ICC = 0.98, 95% CI: 0.97–0.98].

Participant Characteristics n (%) or M ± SD

  Moderate Frailty (score 8–9) 16 (7.3)

  Severe Frailty (score 10+) 7 (3.2)

N = 228 unless otherwise indicated. Sample sizes vary due to missing data. *Categories are not mutually 
exclusive; participants may have multiple conditions.

https://doi.org/10.1371/journal.pdig.0001172.t003

Table 3.  (Continued)

Table 4.  Agreement between MMC and clinician (CEP).

Movement Assessment Outcome n ICC (95% CI) Cohen’s kappa

Timed Up and Go (TUG) Duration (s) 226 0.962 (0.927, 0.977)

30-second Sit-to-Stand (30s-STS) Count (reps) 222 0.928 (0.895, 0.949)

SPPB: Complete Battery Score (0–12) 178 0.808

  Side-by-Side Stand Duration (0–10s) 220 perfect agreement (ICC undefinable*)

  Semi-Tandem Stand Duration (0–10s) 220 perfect agreement (ICC undefinable*)

  Tandem Stand Duration (0–10s) 200 0.812 (0.758, 0.855)

  Tandem Stand (hand support excl.**) Duration (0–10s) 194 0.979 (0.972, 0.984)

SPPB: 5-times Sit-to-Stand (5xSTS) Duration (s) 213 0.995 (0.983, 0.998)

SPPB: Gait Speed Speed (m/s) 226 0.868 (0.796, 0.910)

*There was perfect agreement and no variability within participants for the Side-by-Side and Tandem Stands, so an ICC value could not be computed for 
these two movement assessments.

**Additional exclusions on Tandem Stand are the removal of 6 cases where participants braced themselves with the back of a chair that was placed 
beside them for safety.

https://doi.org/10.1371/journal.pdig.0001172.t004

https://doi.org/10.1371/journal.pdig.0001172.t003
https://doi.org/10.1371/journal.pdig.0001172.t004
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For the total SPPB score, calculated as the sum of the individual SPPB components, agreement between the CEP and 
the MMC app was high, with a weighted Cohen’s kappa of 0.808, indicating almost perfect agreement.

3.3.  Tech-related data loss

Tech-related data loss was tracked across the seven movement assessments and is summarized in Table 5. After remov-
ing non-technical exclusions (e.g., participant opt-outs, protocol deviations), 1576 total MMC app recordings remained. Of 
these, 1527 were analyzable, resulting in a tech-related data loss rate of 3.1% (49 recordings).

Of the small number of excluded recordings (49 of 1576 total recordings), the most common reason for exclusion was 
poor motion tracking quality (21 recordings, or 1.3% of all MMC app recordings). Other exclusion reasons included incom-
plete data due to errors in early algorithm versions (13 recordings) and app crashes (10 recordings), though each type of 
exclusion amounted to less than 1% of data loss.

Three assessments—Gait Speed, 30s-STS, and TUG—had minimal tech-related data loss (<1%). The 5xSTS test had 
a specific issue related to stand count discrepancies. In five cases, MMC detected only four repetitions, while the CEP 
identified five. Because the MMC app’s stopping condition was not met, the duration could not be calculated and agree-
ment could not be assessed.

The Tandem Stand had the highest tech-related data loss rate, with 20 unusable MMC app recordings (9% of record-
ings for that test). Most of these were due to poor motion tracking (12 recordings). The algorithm struggled with depth 
cues and differentiating foot placement when participants wore bulky clothing (e.g., long shorts, sweatpants) or dark-
colored attire. These issues and potential solutions are elaborated on in the Discussion.

4.  Discussion

This study validated the use of the Ameya MMC app for automated scoring of physical performance tests in a sample 
of 228 adults with chronic disease. Agreement between gold-standard clinician-determined scores and app-based MMC 
system scores was assessed for the 30-second STS test, the TUG test, and all 5 tests of the SPPB. Good to excellent 
agreement was observed across all assessments, with the TUG, 30s-STS and 5xSTS tests yielding ICC values rang-
ing from 0.928 to 0.995. Clinician and MMC app agreement on the overall SPPB score (composite score of 5 summed 
scores) was found to be almost-perfect (weighted Cohen’s kappa of 0.808). Across all seven physical performance tests, 
only two tests, the Tandem Stand and Gait Speed, were below the threshold for excellent agreement, with ICCs of 0.812 

Table 5.  Participant exclusions and MMC app data loss.

Side-by-Side  
Stand

Semi-Tandem  
Stand

Tandem  
Stand

Gait  
Speed

5xSTS 30s-STS TUG All Tests  
Combined

N Total Participants 228 228 228 228 228 228 228 1596

Non-Tech Exclusions

  Participant Opt-Out 2 7 2 11

  Protocol Deviation 1 6 2 9

    N After Non-Tech Exclusions 228 227 220 228 221 224 228 1576

Tech Exclusions

  App Crash 2 2 3 2 1 10

  Incomplete Data (Early Algorithm) 4 5 3 1 13

  Poor Motion Tracking Quality 2 5 12 2 21

  Stand Count Discrepancy 5 5

    N After Tech Exclusions 220 220 200 226 213 222 226 1527

    % Tech-Related Data Loss 3.5 3.1 9.1 0.9 3.6 0.9 0.9 3.1

https://doi.org/10.1371/journal.pdig.0001172.t005

https://doi.org/10.1371/journal.pdig.0001172.t005
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and 0.868, respectively. Overall, these results demonstrate that with the use of carefully developed algorithms, app-based 
scoring of in-clinic physical performance assessments using the Ameya MMC app provides good to excellent agreement 
with gold-standard clinician-determined scoring.

Despite strong evidence linking physical performance tests to clinical outcomes such as hospitalization, disability, and 
mortality [12–17,77,78], gold-standard, clinician-determined assessments remain underutilized in routine care, including 
in rehabilitation and chronic disease management [79–81]. Across care settings, clinicians cite time constraints, lack of 
trained or certified personnel, and other practical limitations as barriers to administering these standardized and objective 
tests [82–85]. The current study begins to address these challenges by demonstrating that physical performance assess-
ments can be accurately scored using a self-contained app running on an iPad, eliminating the need for external sensors, 
computing infrastructure, or post-testing analysis. This easy-to-use setup lowers the barrier to in-clinic use and suggests 
the potential of future remote, asynchronous use, expanding access for patients and scalability for health systems.

Others have explored the supplementary use of consumer-grade technology and MMC technology with physical 
performance assessments, using the Microsoft Kinect or other simple RGB cameras for motion tracking, however, these 
approaches typically require additional computing infrastructure, technical expertise, and are often limited to a single 
assessment type [29]. In contrast, the current study is, to our knowledge, the first to demonstrate expert-level scoring 
across a suite of standardized physical performance tests using a standalone, real-time mobile app. This includes seven 
validated tests administered during a single clinical session across a large and clinically diverse population of individuals 
with at least one chronic condition predisposing to frailty. Although previous studies have tested large samples and/or 
multiple performance tasks [86,87], none have combined portability, real-time scoring, clinical usability, and a broad range 
of validated assessments, within a single, plug-and-play app compatible with any LiDAR-enabled device (e.g., iPhone Pro 
or iPad Pro models). This tool may help address practical barriers to physical performance assessment in clinical settings 
by offering an accessible and standardized measurement approach.

Building on this unique approach, these findings can be situated alongside recent efforts to automate physical per-
formance assessments using non-laboratory, MMC technology-based tools. In a series of studies [88–90], an electronic 
SPPB kiosk demonstrated excellent agreement with manually scored assessments (ICC = 0.92 for the total score [90]). 
While the kiosk also used LiDAR sensor technology, it incorporated additional hardware, including a load cell array 
(weight-sensitive mat) for the three balance tests and the 5xSTS [90]. Despite this added hardware, its scoring precision 
was comparable to or lower than that of the current study. For instance, the balance ICC (0.89, 95% CI: 0.81–0.93) and 
5xSTS ICC (0.84, 95% CI: 0.75–0.90) [90] were similar to or lower than those observed here (0.81 for Tandem Stand 
before exclusions, and 0.99 for 5xSTS). Their data loss rate (3.3%, defined as the proportion of participants excluded due 
to incomplete data capture [90]) was also similar to that observed in the present study.

In another large-scale study, Liu et al. [86] tested 665 older adults using a Microsoft Kinect, custom software, a Mini 
PC and a custom TV-based interface. Their system incorporated seven functional assessments, including STS, TUG, and 
Gait Speed, and produced correlation coefficients between automated and clinician scores. Most correlations were strong 
and consistent with the current study findings, except for Gait Speed, where their correlation (r = 0.493) showed much 
weaker agreement than our measure of agreement (ICC = 0.868). Data loss was not reported. In a much smaller sample 
of 30 older adults, Kaewakaen et al. [91] achieved excellent agreement with an expert rater using a Kinect for the 5STS, 
further supporting the feasibility of automated scoring in this domain. Together, these comparisons illustrate the promise of 
prior MMC systems but also underscore the benefits of a streamlined, app-based approach.

These findings support the use of the Ameya MMC app as a practical tool to facilitate accurate, objective physical 
performance testing in clinical settings. Rather than replacing clinician expertise, the app is designed to complement it, 
reducing scoring burden while maintaining accuracy. Advantages include automated scoring, improved efficiency, and 
the potential for non-specialized staff to conduct assessments, which may enable more frequent monitoring of physical 
function [31,32].
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The tool may be particularly relevant in resource-limited settings [29,92], such as rural clinics or long-term care facili-
ties, where access to trained assessors is often constrained [31]. In these contexts, it could support earlier identification 
of deficits that may be modifiable with intervention. In research contexts, the automated evaluation through the app could 
also streamline data collection and make it more feasible to include physical performance testing as an objective out-
come measure across larger or more distributed studies. By facilitating accurate, scalable, and accessible assessment 
[29,31,32], this approach supports more equitable, patient-centered models of care [93,94] and serves as a promising 
adjunct to traditional in-person assessments.

4.1.  Limitations

While the automated MMC scoring approach demonstrated strong overall agreement, several limitations and design 
considerations emerged. One key challenge was validating this MMC app approach against clinician judgment, which 
includes a degree of subjectivity. For example, CEPs may have counted a borderline STS repetition that occurred just 
after the timer ended or have allowed for slight deviations in form (such as not standing fully upright), whereas the MMC 
app’s rigid nature with fixed thresholds did not accommodate these nuances. This occasionally led to discrepancies, such 
as the MMC app scoring only four repetitions when the CEP counted five, highlighting a trade-off between algorithmic 
precision and assessor flexibility. CEPs also relied on the MMC app’s auditory countdown to synchronize their stopwatch, 
likely introducing small timing inconsistencies due to reaction time, which may have added noise to the reported agree-
ment measures.

The Tandem Stand posed the greatest challenge in terms of both scoring accuracy and data quality. For safety, the 
test requires a nearby chair for support, and the test is stopped if the participant uses the chair. While CEPs could directly 
observe whether support of the chair was used, the MMC app could not detect this, as the chair was often occluded from 
the camera’s view. Modifications to the algorithm that account for this scenario are underway. Exclusion of these six cases 
substantially improved agreement. Beyond this challenge, the static nature and sagittal orientation of the Tandem Stand 
reduced the MMC app’s ability to detect and track positions of the key body joints, especially in the lower body, leading to 
poor tracking in some participants. These issues were most common when participants wore dark or loose-fitting clothing 
or footwear that obscured joint landmarks. Future improvements may improve participant positioning and algorithmic han-
dling of common occlusion scenarios.

Gait Speed measurement also presented unique challenges, as it required participants to move over a longer distance 
than the other tests. Unlike CEPs, who timed a marked 3-meter section, the MMC app does not track floor markers and 
instead relies on depth measurements that may not be captured over an identical time window to the CEP. This approach 
introduced some variability, particularly given the LiDAR sensor’s reduced depth accuracy beyond 5 meters—an issue that 
occasionally affected tracking quality when participants were furthest from the iPad (at the start of their Gait Speed test).

Because both the MMC app and the CEP were scoring the same test instances, participant instructions were delivered 
solely by the CEP, and the app included only a countdown timer. Observing the instructional flow and challenges across a 
large sample has helped inform the design of automated instructions to be integrated in future app versions, similar to the 
approach taken by Liu et al. [86]

Beyond these procedural considerations, sample composition also presents limitations in this study. Approximately 80% 
of participants identify as White, and the cohort is largely composed of older adults. This limits generalizability to younger 
populations with chronic disease and to individuals from diverse racial and ethnic backgrounds. Prior work has shown that 
computer vision systems may perform less accurately across different skin tones and body types [95,96], and broader 
digital health research warns that inadequate diversity in training and validation can perpetuate health inequities [97–99].

Finally, these findings are currently limited to supervised, in-clinic use and are not yet generalizable to remote or 
unsupervised settings. The current approach also depends on LiDAR-enabled devices, which are typically newer, 
higher-end consumer models—potentially limiting accessibility for some users. Taken together, these limitations illustrate 



PLOS Digital Health | https://doi.org/10.1371/journal.pdig.0001172  January 6, 2026 13 / 19

important design considerations that will guide further app refinement to improve usability, performance, reliability, and 
generalizability.

4.2.  Future directions

Building on the insights from this study, next steps will focus on expanding the app’s utility beyond supervised, in-clinic 
use. This includes integrating automated instructions to guide participants through assessments without a clinician pres-
ent, refining test algorithms to better handle edge cases, especially those stemming from safety considerations (e.g., 
detecting compensatory arm movements during balance tests), and adapting assessments so they could be used with 2D/
non-LiDAR smartphone cameras (e.g., with Android phones or tablets, and non-Pro iOS models). Real-time tracking qual-
ity checks will be explored to flag cases where tracking is compromised—such as due to dark or loose clothing—allowing 
participants to correct the issue before data is recorded (and thus reducing the rate of data loss to poor motion tracking).

The MMC app is being adapted for remote and asynchronous use, allowing users to perform assessments on their 
own at home. Doing so requires thoughtful updates, not just to the technology (e.g., adjustments to enable non-LiDAR, 
2D smartphone camera use), but also to safety protocols and user interface design, especially to support older adults or 
individuals with limited mobility. We envision a future where a simple 30s-STS task, captured with a tablet in a clinic or 
home setting, becomes a routine part of health monitoring, just like blood pressure, weight, or height [12,100,101]. Just 
as automated blood pressure cuffs have enabled non-clinicians to reliably capture vital signs, advances in MMC have the 
potential to bring the same level of objectivity and convenience to the assessment of physical function.

In parallel, the next steps will explore how the rich kinematic data captured during app-based MMC assessments could 
yield deeper clinical insight—without placing any extra burden on patients or clinicians. These continuous movement sig-
nals, already collected by the MMC app, may offer a more nuanced and objective view of how these tasks are performed, 
beyond the final score. For example, two individuals might complete 12 repetitions in a 30-second STS test, but one 
performs with fluid, controlled motion while the other shows erratic pacing or compensatory strategies that could signal 
instability, muscular deficits, disease, or fall risk [24,26,70,102–104]. Reducing the performance metrics into a single repe-
tition count or duration obscures meaningful differences in movement quality [32,105,106]. By utilizing the full potential of 
kinematic data from MMC technology, we can enhance clinical interpretation, identifying subtle impairments that traditional 
scoring methods may miss. This represents an important step to maximizing the value of digital assessments—moving 
from simple tools for quantifying gross test performance to a platform that provides deeper insights into functional ability. 
These next steps are intended to advance the integration of physical function monitoring into both research and routine 
care in a more consistent and accessible manner.

5.  Conclusion

This study validated a self-contained, app-based MMC system for scoring physical performance assessments in a large 
and clinically diverse sample of adults with chronic medical conditions. Good to excellent agreement was found between 
the app’s automated scores and those of a trained clinician (CEP) across multiple functional tests, supporting its accuracy 
and feasibility for in-clinic use. By enabling automated scoring within a portable app, this approach may help to reduce 
barriers to standardized physical function assessment. With continued development in this field, there is potential to 
support more scalable, accessible, and patient-centered approaches to frailty and fall-risk screening, prehabilitation and 
tracking rehabilitation progress, as well as proactive monitoring of physical, functional health across the lifespan.

Supporting information

S1 Table. Average scores recorded by CEP and MMC app for each movement assessment. 
(PDF)
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